skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chanekar, Prasad Vilas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Modifying the structure of man-made and natural networked systems has become increasingly feasible due to recent technological advances. This flexibility offers great opportunities to save resources and improve controllability and energy efficiency. In contrast (and dual) to the well-studied optimal actuator placement problem, this work focuses on improving network controllability by adding and/or re-weighting network edges while keeping the actuation structure fixed. First a novel energy-based edge centrality measure is proposed and then its relationship with the gradient (with respect to edge weights) of the trace of the controllability Gramian is rigorously characterized. Finally, a network modification algorithm based on the proposed measure is proposed and its efficacy in terms of computational complexity and controllability enhancement is numerically demonstrated. 
    more » « less